Uygulamaya git

Dersler

Matematik

4 Ara 2025

799

8 sayfa

Fonksiyonlar Konusu - TYT Matematik

user profile picture

Bünyamin @bnyamin_v945i

Fonksiyonlar, matematiğin en temel konularından biri ve günlük hayatta sürekli karşılaştığımız bir kavram. Arabanın hızı ile aldığı yol... Daha fazla göster

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Fonksiyon Kavramı ve Tanımı

Fonksiyon dediğimiz şey aslında çok basit bir değer girdiğinde, belirli bir kuralla başka bir değer çıkan sistem. Tıpkı bir makinede olduğu gibi - bir şey koyuyorsun, başka bir şey çıkıyor.

Fonksiyonun tanımı şöyle A ve B boş olmayan iki küme olduğunda, A'nın her elemanını B'nin bir ve yalnız bir elemanına eşleyen ilişkiye fonksiyon denir. Bu f A→B şeklinde gösterilir.

Fonksiyon olabilmesi için iki şart var A'daki her elemanın mutlaka bir görüntüsü olmalı ve her elemanın tek bir görüntüsü olmalı. Yani açıkta eleman kalmamalı ve bir eleman iki farklı yere gitmemeli.

Önemli Not Fonksiyonlarda y = f(x) gösteriminde x'e bağımsız değişken, y'ye ise bağımlı değişken denir.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Tanım, Değer ve Görüntü Kümeleri

Fonksiyonlarda üç önemli küme var ve bunları karıştırmamak gerek. Tanım kümesi A, fonksiyonun nereden başladığı; değer kümesi B, nereye gidebileceği; görüntü kümesi f(A) ise gerçekten gittiği yerler.

Fonksiyon makinesini düşün x değerini makineye koyuyorsun, f(x) değeri çıkıyor. x girdi, f(x) çıktı oluyor. Bu makinenin kuralını bulmak için girdi-çıktı tablolarına bakıp pattern yakalarız.

Fonksiyon olup olmadığını anlamak için şemalarda dikkat edilecek nokta bir elemandan birden fazla ok çıkmamalı. Eğer çıkıyorsa, o eşleme fonksiyon değildir.

Pratik İpucu Tanım kümesi verilmemişse, bağımsız değişkenin alabileceği en geniş reel sayı kümesini düşün.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Fonksiyon Değeri Hesaplama

Fonksiyon değeri hesaplamak sanıldığından çok daha kolay. f(x) = 2x + 3 ise f(4)'ü bulmak için x yerine 4 koy f(4) = 2(4) + 3 = 11.

Biraz daha karmaşık durumlar var fx+2x+2 = 5x + 1 gibi. Burada f(6)'yı bulmak istiyorsan x+2 = 6, yani x = 4 bulup yerine koyarsın. Bu tür sorularda yerine koyma tekniği çok işe yarıyor.

Kompozit fonksiyon durumlarında da aynı mantık f(2x) isteniyor ve f(x) = 3x + 1 ise, x yerine 2x koy f(2x) = 3(2x) + 1 = 6x + 1.

Dikkat fx2+2x+6x²+2x+6 = 3x²+6x+20 gibi sorularda önce parantez içini organize et, sonra dışarıdaki ifadeyi ona göre ayarla.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Özel Fonksiyon Türleri Birim ve Sabit

Birim fonksiyon en basit fonksiyon f(x) = x. Her elemanı kendisine eşler, hiçbir değişiklik yapmaz. Matematikteki "etkisizlik elemanı" gibi düşünebilirsin.

Sabit fonksiyon da çok basit girdiğin ne olursa olsun, çıkan hep aynı. f(x) = c şeklinde. Grafik olarak düzlemde yatay bir çizgi oluşturur.

f(x) = ax² + bx + c'nin sabit fonksiyon olması için a = 0 ve b = 0 olmalı. Sadece sabit terim kalır. Bu tür sorularda katsayıları sıfıra eşitleyip bilinmeyenleri bul.

Hatırla A'dan B'ye en çok s(B) tane sabit fonksiyon tanımlanabilir, çünkü B'nin her elemanı için bir sabit fonksiyon olabilir.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Fonksiyon Çeşitleri ve Doğrusal Fonksiyonlar

Fonksiyonlar üç ana gruba ayrılır İçine fonksiyon (değer kümesinde açıkta eleman var), örten fonksiyon (değer kümesinin tamamı kullanılıyor), bire-bir fonksiyon (farklı girdiler farklı çıktılar veriyor).

Bire-bir fonksiyon önemli x₁ ≠ x₂ iken f(x₁) ≠ f(x₂) olmalı. Grafikte yatay çizgi testi yapabilirsin - yatay çizgi grafiği birden fazla noktada keserse bire-bir değil.

Doğrusal fonksiyon f(x) = mx + n şeklinde. m eğim, n y-kesim noktası. İki nokta verildiyse iki denklem kurup m ve n'i bulabilirsin.

İpucu Doğrusal fonksiyonun bire-bir olması için m ≠ 0 olmalı. m = 0 ise sabit fonksiyon olur.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Tek, Çift ve Parçalı Fonksiyonlar

Çift fonksiyon fx-x = f(x). Y eksenine göre simetrik. Örnek f(x) = x², f(x) = |x|. Tek fonksiyon fx-x = -f(x). Orjine göre simetrik. Örnek f(x) = x³, f(x) = x.

Bu özellikleri kullanarak bilinmeyen katsayıları bulabiliriz. Çift fonksiyon denklemi verilmişse x yerine -x koy ve fx-x = f(x) eşitliğini kullan.

Parçalı fonksiyonlar farklı aralıklarda farklı kuralları olan fonksiyonlar. Mutlak değer fonksiyonu da parçalı |x| = x (x≥0), |x| = -x (x<0).

Pratik Not Parçalı fonksiyonlarda hangi aralığa düştüğünü önce belirle, sonra o aralıktaki kuralı uygula.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Mutlak Değer ve Eşit Fonksiyonlar

Mutlak değer fonksiyonu parçalı fonksiyonun klasik örneği |x| = -x (x<0), |x| = x (x≥0), |x| = 0 x=0x=0. Grafik olarak V şekli oluşturur.

|x-a| şeklindeki fonksiyonları parçalı yazmak için x-a'nın işaretini kontrol et. x-a ≥ 0 ise |x-a| = x-a, x-a < 0 ise |x-a| = -xax-a.

Eşit fonksiyonlar f A→B ve g A→B için her x∈A'da f(x) = g(x) ise f = g. Aynı tanım ve değer kümesine sahip olmaları da şart.

Önemli Eşit fonksiyonlar için sadece kuralın aynı olması yetmez, tanım ve değer kümeleri de aynı olmalı.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Değerlendirme ve Uygulama

Bu sayfadaki sorular fonksiyon konusunu pekiştirmek için hazırlanmış. Temel fonksiyon değeri hesaplamadan başlayıp kompozit fonksiyonlara, özel fonksiyon türlerine kadar geniş bir yelpaze var.

Taksi ücreti örneği gibi parçalı fonksiyon uygulamaları, fonksiyonların günlük hayattaki karşılığını gösteriyor. Farklı mesafe aralıklarında farklı tarifeler uygulanıyor.

Çift ve tek fonksiyon sorularında fx-x ile f(x) arasındaki ilişkiyi kullanarak bilinmeyen katsayıları bulmaya odaklan. Parçalı fonksiyonlarda ise hangi aralıkta olduğunu doğru belirleme kritik.

Final Tavsiyesi Fonksiyon sorularını çözerken önce fonksiyonun türünü belirle, sonra uygun yöntemi uygula. Acele etme, adım adım ilerle.

Hiç sormayacaksın sanmıştık...

Knowunity yapay zeka arkadaşı nedir?

Yapay zeka arkadaşımız öğrencilerin ihtiyaçlarına göre özel olarak tasarlanmıştır. Platformda bulunan milyonlarca içeriğe dayanarak öğrencilere gerçekten anlamlı ve ilgili yanıtlar verebiliyoruz. Ancak mesele sadece cevaplar değil, refakatçi aynı zamanda kişiselleştirilmiş öğrenme planları, sınavlar veya sohbet içerikleri ve öğrencilerin becerilerine ve gelişimlerine dayalı %100 kişiselleştirme ile öğrencilere günlük öğrenme zorluklarında rehberlik ediyor.

Knowunity uygulamasını nereden indirebilirim?

Uygulamayı Google Play Store ve Apple App Store'dan indirebilirsiniz.

Knowunity ücretsiz mi?

Knowunity uygulaması ücretsiz! Uygulamamız çok yakında indirmeye hazır olacak, bekle bizi. 💙

9

Akıllı Araçlar YENİ

Bu notu şunlara dönüştür: ✓ 50+ Alıştırma Sorusu ✓ Etkileşimli Flash Kartları ✓ Tam Deneme Sınavı ✓ Kompozisyon Taslakları

Deneme Sınavı
Quiz
Flashcard
Kompozisyon

Aradığını bulamıyor musun? Diğer derslere göz at.

Kullanıcılarımızdan yorumlar. Onlar her şeyi çok beğendi — sen de beğeneceksin.

4.9/5

App Store

4.8/5

Google Play

Uygulama çok kolay kullanılıyor ve güzel tasarlanmış. Şu ana kadar aradığım her şeyi buldum ve sunumlardan çok şey öğrendim! Kesinlikle ödevlerim için hep kullanacağım!

A.S.

iOS kullanıcısı

Uygulama çok iyi. Çok fazla ders notu ve yardımlaşma var. Örneğin benim problem yaşadığım bir ders Geometriydi ve ANINDA yardım ettiler beraber hem sorularımı çözdük hem konu anlatımı buldum. Herkese tavsiye ederim.

S.L.

Android kullanıcısı

BEN ŞOK. Reklamını sık sık gördüğüm için uygulamayı denedim ve gerçekten hayran kaldım. Bu uygulama okul için tam ihtiyacım olan şey. Anında ödev yardımı, konu anlatımı, örnek sınavlar, flaşkartlar hepsi hepsi var, şiddetle tavsiye ederim ✅

A.

iOS kullanıcısı

Knowunity'yi keşfedinceye kadar ödevlerimi zamanında tamamlamakta zorlanıyordum, Knowunity sadece kendi ders notlarımı yüklemeyi kolaylaştırmakla kalmıyor, aynı zamanda çalışmamı daha hızlı ve verimli hale getiren harika özetler de sunuyor.

Thomas R

iOS kullanıcısı

Ödevlerim için önemli bilgilerin tümünü bulmak her zaman bir zorluktu - Knowunity'yi kullanmaya başladığımdan beri, ders notlarımı kolayca yükleyebilir ve başkalarının özetlerinden faydalanabilirim, bu da organizasyon konusunda bana çok yardımcı oluyor.

Lisa M

Android kullanıcısı

Ders çalışırken genellikle yeterince genel bakışa sahip olmadığımı hissederdim, ama Knowunity'yi kullanmaya başladığımdan beri bu artık sorun değil - ders notlarımı yüklüyorum ve platformda her zaman yardımcı özetler buluyorum, bu da öğrenmemi çok daha kolaylaştırıyor.

David K

iOS kullanıcısı

Uygulama acayip iyi! Konuyu yazıyorum hemen yanıt alıyorum. Bi şeyi anlamak için 10 tane youtube videosu izlemem gerekmiyor. Kesssinlikle tavsiye ederim!

Sudenaz Ocak

Android kullanıcısı

Matematikte baya kötüydüm ama bu uygulama sayesinde şimdi daha iyiyim. Uygulamayı yapanlara için çok teşekkürler!

G.B.

Android kullanıcısı

Sunumlarım için tüm bilgileri toplamak gerçekten zordu. Ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyorum ve başkalarından harika özetler buluyorum - bu da çalışmamı çok daha verimli hale getiriyor!

Julia S

Android kullanıcısı

Tüm çalışma materyalleriyle sürekli stres altındaydım, ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyor ve başkalarının harika özetlerine bakıyorum - her şeyi daha iyi yönetmemi sağlıyor ve çok daha az stresli.

Marco B

iOS kullanıcısı

Ödevlerim için doğru materyalleri bulmak her zaman zordu. Şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarından en iyi özetleri alıyorum - her şeyi daha hızlı anlamama yardımcı oluyor ve notlarımı yükseltiyor.

Sarah L

Android kullanıcısı

Eskiden okul materyallerini Google'da aramakla saatler harcardım, ama şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarının faydalı özetlerine bakıyorum - sınavlara hazırlanırken kendimi çok daha güvende hissediyorum.

Paul T

iOS kullanıcısı

Uygulama çok kolay kullanılıyor ve güzel tasarlanmış. Şu ana kadar aradığım her şeyi buldum ve sunumlardan çok şey öğrendim! Kesinlikle ödevlerim için hep kullanacağım!

A.S.

iOS kullanıcısı

Uygulama çok iyi. Çok fazla ders notu ve yardımlaşma var. Örneğin benim problem yaşadığım bir ders Geometriydi ve ANINDA yardım ettiler beraber hem sorularımı çözdük hem konu anlatımı buldum. Herkese tavsiye ederim.

S.L.

Android kullanıcısı

BEN ŞOK. Reklamını sık sık gördüğüm için uygulamayı denedim ve gerçekten hayran kaldım. Bu uygulama okul için tam ihtiyacım olan şey. Anında ödev yardımı, konu anlatımı, örnek sınavlar, flaşkartlar hepsi hepsi var, şiddetle tavsiye ederim ✅

A.

iOS kullanıcısı

Knowunity'yi keşfedinceye kadar ödevlerimi zamanında tamamlamakta zorlanıyordum, Knowunity sadece kendi ders notlarımı yüklemeyi kolaylaştırmakla kalmıyor, aynı zamanda çalışmamı daha hızlı ve verimli hale getiren harika özetler de sunuyor.

Thomas R

iOS kullanıcısı

Ödevlerim için önemli bilgilerin tümünü bulmak her zaman bir zorluktu - Knowunity'yi kullanmaya başladığımdan beri, ders notlarımı kolayca yükleyebilir ve başkalarının özetlerinden faydalanabilirim, bu da organizasyon konusunda bana çok yardımcı oluyor.

Lisa M

Android kullanıcısı

Ders çalışırken genellikle yeterince genel bakışa sahip olmadığımı hissederdim, ama Knowunity'yi kullanmaya başladığımdan beri bu artık sorun değil - ders notlarımı yüklüyorum ve platformda her zaman yardımcı özetler buluyorum, bu da öğrenmemi çok daha kolaylaştırıyor.

David K

iOS kullanıcısı

Uygulama acayip iyi! Konuyu yazıyorum hemen yanıt alıyorum. Bi şeyi anlamak için 10 tane youtube videosu izlemem gerekmiyor. Kesssinlikle tavsiye ederim!

Sudenaz Ocak

Android kullanıcısı

Matematikte baya kötüydüm ama bu uygulama sayesinde şimdi daha iyiyim. Uygulamayı yapanlara için çok teşekkürler!

G.B.

Android kullanıcısı

Sunumlarım için tüm bilgileri toplamak gerçekten zordu. Ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyorum ve başkalarından harika özetler buluyorum - bu da çalışmamı çok daha verimli hale getiriyor!

Julia S

Android kullanıcısı

Tüm çalışma materyalleriyle sürekli stres altındaydım, ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyor ve başkalarının harika özetlerine bakıyorum - her şeyi daha iyi yönetmemi sağlıyor ve çok daha az stresli.

Marco B

iOS kullanıcısı

Ödevlerim için doğru materyalleri bulmak her zaman zordu. Şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarından en iyi özetleri alıyorum - her şeyi daha hızlı anlamama yardımcı oluyor ve notlarımı yükseltiyor.

Sarah L

Android kullanıcısı

Eskiden okul materyallerini Google'da aramakla saatler harcardım, ama şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarının faydalı özetlerine bakıyorum - sınavlara hazırlanırken kendimi çok daha güvende hissediyorum.

Paul T

iOS kullanıcısı

 

Matematik

799

4 Ara 2025

8 sayfa

Fonksiyonlar Konusu - TYT Matematik

user profile picture

Bünyamin

@bnyamin_v945i

Fonksiyonlar, matematiğin en temel konularından biri ve günlük hayatta sürekli karşılaştığımız bir kavram. Arabanın hızı ile aldığı yol arasındaki ilişkiden, telefonunuzun batarya yüzdesine kadar her şey aslında birer fonksiyon örneği.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Fonksiyon Kavramı ve Tanımı

Fonksiyon dediğimiz şey aslında çok basit: bir değer girdiğinde, belirli bir kuralla başka bir değer çıkan sistem. Tıpkı bir makinede olduğu gibi - bir şey koyuyorsun, başka bir şey çıkıyor.

Fonksiyonun tanımı şöyle: A ve B boş olmayan iki küme olduğunda, A'nın her elemanını B'nin bir ve yalnız bir elemanına eşleyen ilişkiye fonksiyon denir. Bu f: A→B şeklinde gösterilir.

Fonksiyon olabilmesi için iki şart var: A'daki her elemanın mutlaka bir görüntüsü olmalı ve her elemanın tek bir görüntüsü olmalı. Yani açıkta eleman kalmamalı ve bir eleman iki farklı yere gitmemeli.

Önemli Not: Fonksiyonlarda y = f(x) gösteriminde x'e bağımsız değişken, y'ye ise bağımlı değişken denir.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Tanım, Değer ve Görüntü Kümeleri

Fonksiyonlarda üç önemli küme var ve bunları karıştırmamak gerek. Tanım kümesi A, fonksiyonun nereden başladığı; değer kümesi B, nereye gidebileceği; görüntü kümesi f(A) ise gerçekten gittiği yerler.

Fonksiyon makinesini düşün: x değerini makineye koyuyorsun, f(x) değeri çıkıyor. x girdi, f(x) çıktı oluyor. Bu makinenin kuralını bulmak için girdi-çıktı tablolarına bakıp pattern yakalarız.

Fonksiyon olup olmadığını anlamak için şemalarda dikkat edilecek nokta: bir elemandan birden fazla ok çıkmamalı. Eğer çıkıyorsa, o eşleme fonksiyon değildir.

Pratik İpucu: Tanım kümesi verilmemişse, bağımsız değişkenin alabileceği en geniş reel sayı kümesini düşün.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Fonksiyon Değeri Hesaplama

Fonksiyon değeri hesaplamak sanıldığından çok daha kolay. f(x) = 2x + 3 ise f(4)'ü bulmak için x yerine 4 koy: f(4) = 2(4) + 3 = 11.

Biraz daha karmaşık durumlar var: fx+2x+2 = 5x + 1 gibi. Burada f(6)'yı bulmak istiyorsan x+2 = 6, yani x = 4 bulup yerine koyarsın. Bu tür sorularda yerine koyma tekniği çok işe yarıyor.

Kompozit fonksiyon durumlarında da aynı mantık: f(2x) isteniyor ve f(x) = 3x + 1 ise, x yerine 2x koy: f(2x) = 3(2x) + 1 = 6x + 1.

Dikkat: fx2+2x+6x²+2x+6 = 3x²+6x+20 gibi sorularda önce parantez içini organize et, sonra dışarıdaki ifadeyi ona göre ayarla.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Özel Fonksiyon Türleri: Birim ve Sabit

Birim fonksiyon en basit fonksiyon: f(x) = x. Her elemanı kendisine eşler, hiçbir değişiklik yapmaz. Matematikteki "etkisizlik elemanı" gibi düşünebilirsin.

Sabit fonksiyon da çok basit: girdiğin ne olursa olsun, çıkan hep aynı. f(x) = c şeklinde. Grafik olarak düzlemde yatay bir çizgi oluşturur.

f(x) = ax² + bx + c'nin sabit fonksiyon olması için a = 0 ve b = 0 olmalı. Sadece sabit terim kalır. Bu tür sorularda katsayıları sıfıra eşitleyip bilinmeyenleri bul.

Hatırla: A'dan B'ye en çok s(B) tane sabit fonksiyon tanımlanabilir, çünkü B'nin her elemanı için bir sabit fonksiyon olabilir.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Fonksiyon Çeşitleri ve Doğrusal Fonksiyonlar

Fonksiyonlar üç ana gruba ayrılır: İçine fonksiyon (değer kümesinde açıkta eleman var), örten fonksiyon (değer kümesinin tamamı kullanılıyor), bire-bir fonksiyon (farklı girdiler farklı çıktılar veriyor).

Bire-bir fonksiyon önemli: x₁ ≠ x₂ iken f(x₁) ≠ f(x₂) olmalı. Grafikte yatay çizgi testi yapabilirsin - yatay çizgi grafiği birden fazla noktada keserse bire-bir değil.

Doğrusal fonksiyon f(x) = mx + n şeklinde. m eğim, n y-kesim noktası. İki nokta verildiyse iki denklem kurup m ve n'i bulabilirsin.

İpucu: Doğrusal fonksiyonun bire-bir olması için m ≠ 0 olmalı. m = 0 ise sabit fonksiyon olur.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Tek, Çift ve Parçalı Fonksiyonlar

Çift fonksiyon: fx-x = f(x). Y eksenine göre simetrik. Örnek: f(x) = x², f(x) = |x|. Tek fonksiyon: fx-x = -f(x). Orjine göre simetrik. Örnek: f(x) = x³, f(x) = x.

Bu özellikleri kullanarak bilinmeyen katsayıları bulabiliriz. Çift fonksiyon denklemi verilmişse x yerine -x koy ve fx-x = f(x) eşitliğini kullan.

Parçalı fonksiyonlar farklı aralıklarda farklı kuralları olan fonksiyonlar. Mutlak değer fonksiyonu da parçalı: |x| = x (x≥0), |x| = -x (x<0).

Pratik Not: Parçalı fonksiyonlarda hangi aralığa düştüğünü önce belirle, sonra o aralıktaki kuralı uygula.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Mutlak Değer ve Eşit Fonksiyonlar

Mutlak değer fonksiyonu parçalı fonksiyonun klasik örneği: |x| = -x (x<0), |x| = x (x≥0), |x| = 0 x=0x=0. Grafik olarak V şekli oluşturur.

|x-a| şeklindeki fonksiyonları parçalı yazmak için x-a'nın işaretini kontrol et. x-a ≥ 0 ise |x-a| = x-a, x-a < 0 ise |x-a| = -xax-a.

Eşit fonksiyonlar: f: A→B ve g: A→B için her x∈A'da f(x) = g(x) ise f = g. Aynı tanım ve değer kümesine sahip olmaları da şart.

Önemli: Eşit fonksiyonlar için sadece kuralın aynı olması yetmez, tanım ve değer kümeleri de aynı olmalı.

FONKSİYONLAR - 1
KAVRAM VE GÖSTERİM

KAVRAM OLARAK FONKSİYON
"Bir arabanın aldığı yol (x), zamana (t)
bağlıdır."
ifadesinin denklem şeklinde

Ders notlarını görmek için kaydolÜcretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Değerlendirme ve Uygulama

Bu sayfadaki sorular fonksiyon konusunu pekiştirmek için hazırlanmış. Temel fonksiyon değeri hesaplamadan başlayıp kompozit fonksiyonlara, özel fonksiyon türlerine kadar geniş bir yelpaze var.

Taksi ücreti örneği gibi parçalı fonksiyon uygulamaları, fonksiyonların günlük hayattaki karşılığını gösteriyor. Farklı mesafe aralıklarında farklı tarifeler uygulanıyor.

Çift ve tek fonksiyon sorularında fx-x ile f(x) arasındaki ilişkiyi kullanarak bilinmeyen katsayıları bulmaya odaklan. Parçalı fonksiyonlarda ise hangi aralıkta olduğunu doğru belirleme kritik.

Final Tavsiyesi: Fonksiyon sorularını çözerken önce fonksiyonun türünü belirle, sonra uygun yöntemi uygula. Acele etme, adım adım ilerle.

Hiç sormayacaksın sanmıştık...

Knowunity yapay zeka arkadaşı nedir?

Yapay zeka arkadaşımız öğrencilerin ihtiyaçlarına göre özel olarak tasarlanmıştır. Platformda bulunan milyonlarca içeriğe dayanarak öğrencilere gerçekten anlamlı ve ilgili yanıtlar verebiliyoruz. Ancak mesele sadece cevaplar değil, refakatçi aynı zamanda kişiselleştirilmiş öğrenme planları, sınavlar veya sohbet içerikleri ve öğrencilerin becerilerine ve gelişimlerine dayalı %100 kişiselleştirme ile öğrencilere günlük öğrenme zorluklarında rehberlik ediyor.

Knowunity uygulamasını nereden indirebilirim?

Uygulamayı Google Play Store ve Apple App Store'dan indirebilirsiniz.

Knowunity ücretsiz mi?

Knowunity uygulaması ücretsiz! Uygulamamız çok yakında indirmeye hazır olacak, bekle bizi. 💙

9

Akıllı Araçlar YENİ

Bu notu şunlara dönüştür: ✓ 50+ Alıştırma Sorusu ✓ Etkileşimli Flash Kartları ✓ Tam Deneme Sınavı ✓ Kompozisyon Taslakları

Deneme Sınavı
Quiz
Flashcard
Kompozisyon

Aradığını bulamıyor musun? Diğer derslere göz at.

Kullanıcılarımızdan yorumlar. Onlar her şeyi çok beğendi — sen de beğeneceksin.

4.9/5

App Store

4.8/5

Google Play

Uygulama çok kolay kullanılıyor ve güzel tasarlanmış. Şu ana kadar aradığım her şeyi buldum ve sunumlardan çok şey öğrendim! Kesinlikle ödevlerim için hep kullanacağım!

A.S.

iOS kullanıcısı

Uygulama çok iyi. Çok fazla ders notu ve yardımlaşma var. Örneğin benim problem yaşadığım bir ders Geometriydi ve ANINDA yardım ettiler beraber hem sorularımı çözdük hem konu anlatımı buldum. Herkese tavsiye ederim.

S.L.

Android kullanıcısı

BEN ŞOK. Reklamını sık sık gördüğüm için uygulamayı denedim ve gerçekten hayran kaldım. Bu uygulama okul için tam ihtiyacım olan şey. Anında ödev yardımı, konu anlatımı, örnek sınavlar, flaşkartlar hepsi hepsi var, şiddetle tavsiye ederim ✅

A.

iOS kullanıcısı

Knowunity'yi keşfedinceye kadar ödevlerimi zamanında tamamlamakta zorlanıyordum, Knowunity sadece kendi ders notlarımı yüklemeyi kolaylaştırmakla kalmıyor, aynı zamanda çalışmamı daha hızlı ve verimli hale getiren harika özetler de sunuyor.

Thomas R

iOS kullanıcısı

Ödevlerim için önemli bilgilerin tümünü bulmak her zaman bir zorluktu - Knowunity'yi kullanmaya başladığımdan beri, ders notlarımı kolayca yükleyebilir ve başkalarının özetlerinden faydalanabilirim, bu da organizasyon konusunda bana çok yardımcı oluyor.

Lisa M

Android kullanıcısı

Ders çalışırken genellikle yeterince genel bakışa sahip olmadığımı hissederdim, ama Knowunity'yi kullanmaya başladığımdan beri bu artık sorun değil - ders notlarımı yüklüyorum ve platformda her zaman yardımcı özetler buluyorum, bu da öğrenmemi çok daha kolaylaştırıyor.

David K

iOS kullanıcısı

Uygulama acayip iyi! Konuyu yazıyorum hemen yanıt alıyorum. Bi şeyi anlamak için 10 tane youtube videosu izlemem gerekmiyor. Kesssinlikle tavsiye ederim!

Sudenaz Ocak

Android kullanıcısı

Matematikte baya kötüydüm ama bu uygulama sayesinde şimdi daha iyiyim. Uygulamayı yapanlara için çok teşekkürler!

G.B.

Android kullanıcısı

Sunumlarım için tüm bilgileri toplamak gerçekten zordu. Ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyorum ve başkalarından harika özetler buluyorum - bu da çalışmamı çok daha verimli hale getiriyor!

Julia S

Android kullanıcısı

Tüm çalışma materyalleriyle sürekli stres altındaydım, ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyor ve başkalarının harika özetlerine bakıyorum - her şeyi daha iyi yönetmemi sağlıyor ve çok daha az stresli.

Marco B

iOS kullanıcısı

Ödevlerim için doğru materyalleri bulmak her zaman zordu. Şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarından en iyi özetleri alıyorum - her şeyi daha hızlı anlamama yardımcı oluyor ve notlarımı yükseltiyor.

Sarah L

Android kullanıcısı

Eskiden okul materyallerini Google'da aramakla saatler harcardım, ama şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarının faydalı özetlerine bakıyorum - sınavlara hazırlanırken kendimi çok daha güvende hissediyorum.

Paul T

iOS kullanıcısı

Uygulama çok kolay kullanılıyor ve güzel tasarlanmış. Şu ana kadar aradığım her şeyi buldum ve sunumlardan çok şey öğrendim! Kesinlikle ödevlerim için hep kullanacağım!

A.S.

iOS kullanıcısı

Uygulama çok iyi. Çok fazla ders notu ve yardımlaşma var. Örneğin benim problem yaşadığım bir ders Geometriydi ve ANINDA yardım ettiler beraber hem sorularımı çözdük hem konu anlatımı buldum. Herkese tavsiye ederim.

S.L.

Android kullanıcısı

BEN ŞOK. Reklamını sık sık gördüğüm için uygulamayı denedim ve gerçekten hayran kaldım. Bu uygulama okul için tam ihtiyacım olan şey. Anında ödev yardımı, konu anlatımı, örnek sınavlar, flaşkartlar hepsi hepsi var, şiddetle tavsiye ederim ✅

A.

iOS kullanıcısı

Knowunity'yi keşfedinceye kadar ödevlerimi zamanında tamamlamakta zorlanıyordum, Knowunity sadece kendi ders notlarımı yüklemeyi kolaylaştırmakla kalmıyor, aynı zamanda çalışmamı daha hızlı ve verimli hale getiren harika özetler de sunuyor.

Thomas R

iOS kullanıcısı

Ödevlerim için önemli bilgilerin tümünü bulmak her zaman bir zorluktu - Knowunity'yi kullanmaya başladığımdan beri, ders notlarımı kolayca yükleyebilir ve başkalarının özetlerinden faydalanabilirim, bu da organizasyon konusunda bana çok yardımcı oluyor.

Lisa M

Android kullanıcısı

Ders çalışırken genellikle yeterince genel bakışa sahip olmadığımı hissederdim, ama Knowunity'yi kullanmaya başladığımdan beri bu artık sorun değil - ders notlarımı yüklüyorum ve platformda her zaman yardımcı özetler buluyorum, bu da öğrenmemi çok daha kolaylaştırıyor.

David K

iOS kullanıcısı

Uygulama acayip iyi! Konuyu yazıyorum hemen yanıt alıyorum. Bi şeyi anlamak için 10 tane youtube videosu izlemem gerekmiyor. Kesssinlikle tavsiye ederim!

Sudenaz Ocak

Android kullanıcısı

Matematikte baya kötüydüm ama bu uygulama sayesinde şimdi daha iyiyim. Uygulamayı yapanlara için çok teşekkürler!

G.B.

Android kullanıcısı

Sunumlarım için tüm bilgileri toplamak gerçekten zordu. Ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyorum ve başkalarından harika özetler buluyorum - bu da çalışmamı çok daha verimli hale getiriyor!

Julia S

Android kullanıcısı

Tüm çalışma materyalleriyle sürekli stres altındaydım, ama Knowunity'yi kullanmaya başladığımdan beri, notlarımı yüklüyor ve başkalarının harika özetlerine bakıyorum - her şeyi daha iyi yönetmemi sağlıyor ve çok daha az stresli.

Marco B

iOS kullanıcısı

Ödevlerim için doğru materyalleri bulmak her zaman zordu. Şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarından en iyi özetleri alıyorum - her şeyi daha hızlı anlamama yardımcı oluyor ve notlarımı yükseltiyor.

Sarah L

Android kullanıcısı

Eskiden okul materyallerini Google'da aramakla saatler harcardım, ama şimdi sadece notlarımı Knowunity'ye yüklüyorum ve başkalarının faydalı özetlerine bakıyorum - sınavlara hazırlanırken kendimi çok daha güvende hissediyorum.

Paul T

iOS kullanıcısı