Dersler

Dersler

Daha Fazla

Enerji ve Çarpışmalar: 11. Sınıf Esnek ve Esnek Olmayan Çarpışma Formülleri

Görüntüle

Enerji ve Çarpışmalar: 11. Sınıf Esnek ve Esnek Olmayan Çarpışma Formülleri
user profile picture

Elif Ayşe Çiftci

@lifyeiftci_m6clbs5ws

·

24 Takipçiler

Takip Et

Elastic Collisions and Energy Conservation in Physics

This document covers key concepts in elastic collisions, energy conservation, and related formulas in physics. It explores:

  • Formulas for elastic and inelastic collisions
  • Conservation of momentum and kinetic energy
  • Potential and kinetic energy calculations
  • Spring elasticity and compression
  • Energy transformations during collisions

Key points include:

  • The difference between elastic and inelastic collisions
  • Formulas for central and non-central elastic collisions
  • Calculations involving springs and elastic potential energy
  • Applications of work, energy, and power concepts

24.07.2024

5

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Görüntüle

Page 2: Energy Transformations in Collisions

This page delves into energy transformations during collisions, particularly focusing on the interplay between kinetic and potential energy.

Example: The page illustrates how kinetic energy can be converted to potential energy during compression, and then back to kinetic energy as objects separate after collision.

The concept of total mechanical energy conservation is emphasized, showing that the sum of kinetic and potential energies remains constant in an isolated system.

Highlight: The formula Emek = Kinetik + Potansiyel (Mechanical Energy = Kinetic + Potential) is presented, underlining the principle of energy conservation.

The page also touches on the concept of contact time during collisions and how it relates to force and energy transfer.

Vocabulary: Esneklik potansiyel enerjisi formülü (Elastic potential energy formula) is introduced, relating to the energy stored in compressed or stretched objects during collision.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Görüntüle

Page 3: Gravitational Potential Energy and Spring Calculations

This page focuses on calculations involving gravitational potential energy and spring systems. It presents formulas for maximum height calculations and spring compression.

Formula: The gravitational potential energy formula Ep = mgh is presented, where m is mass, g is gravitational acceleration, and h is height.

The page demonstrates how to calculate the maximum height reached by an object launched upward, incorporating both initial kinetic energy and gravitational potential energy.

Example: A problem is solved showing how an object losing mgh of potential energy gains 2mph of kinetic energy, illustrating energy conversion.

Spring calculations are introduced, relating force, spring constant, and displacement:

Formula: F = kx, where F is force, k is the spring constant, and x is displacement.

Vocabulary: Yayın sıkışma miktarı formülü (Spring compression amount formula) is a key concept on this page, used in elastic collision calculations.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Görüntüle

Page 4: Energy Conservation in Complex Systems

This page applies energy conservation principles to more complex systems, involving multiple energy transformations.

Example: A problem is presented where an object falls from a height, compresses a spring, and then rebounds to a new height. This example integrates concepts of gravitational potential energy, elastic potential energy, and kinetic energy.

The page demonstrates step-by-step calculations for such complex energy transformations, emphasizing the conservation of total energy throughout the process.

Highlight: The problem solution shows how to calculate the maximum rebound height by equating initial and final energies in different forms.

Formula: The Kinetik enerji formülü (Kinetic energy formula) KE = ½mv² is applied in conjunction with potential energy formulas to solve complex problems.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Görüntüle

Page 5: Force and Energy in Collisions

The final page focuses on force calculations in collision scenarios, particularly those involving springs.

Formula: The impulse-momentum theorem is implied with the equation F = ma, relating force to mass and acceleration during collision.

The page presents a scenario where an object collides with a spring, emphasizing the conversion of kinetic energy to elastic potential energy.

Highlight: The concept of work done by a spring force is introduced, relating displacement to energy storage in the spring.

Vocabulary: İki boyutta Esnek Çarpışmalar (Elastic Collisions in Two Dimensions) is briefly touched upon, suggesting an extension of the concepts to more complex collision scenarios.

This page serves as a conclusion, tying together the concepts of force, energy, and collisions discussed throughout the document.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Görüntüle

Page 1: Elastic Collision Formulas

This page introduces fundamental equations for elastic collisions. It presents the conservation of momentum and kinetic energy formulas that govern these interactions.

Highlight: The conservation of momentum equation for elastic collisions is presented as m₁v₁ + m₂v₂ = m₁v'₁ + m₂v'₂, where m represents mass and v represents velocity before and after collision.

Definition: An elastic collision is one in which both momentum and kinetic energy are conserved.

The page also shows the kinetic energy conservation equation, emphasizing that the total kinetic energy before and after the collision remains constant in perfectly elastic collisions.

Vocabulary: Merkezi esnek çarpışmalar formül (Formula for central elastic collisions) is a key concept introduced on this page, showing how to calculate velocities after collision.

Aradığını bulamıyor musun? Diğer derslere göz at.

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

Knowunity, Apple tarafından büyük ilgi gördü ve Almanya, İtalya, Polonya, İsviçre ve Birleşik Krallık'ta eğitim kategorisinde sürekli olarak en üst sıralarda yer aldı. Hemen Knowunity'e katıl ve dünya çapında milyonlarca öğrenciyle yardımlaş.

Ranked #1 Education App

İndir

Google Play

İndir

App Store

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

4.9+

Ortalama Uygulama Puanı

15 M

Öğrenci Knowunity kullanıyor

#1

Eğitim uygulamaları tablosunda 12 ülkede

950 K+

Öğrenci ders notlarını yükledi

Kararsız mısın? Bizi bir de dünyanın dört bir yanındaki kullanıcılarımızdan dinle!

iOS Kullanıcısı

Kesinlikle harika bir uygulama, resmen hayatımı kolaylaştırdı.

Stefan S, iOS Kullanıcısı

Uygulama çok basit ve iyi tasarlanmış. Şimdiye kadar aradığım her şeyi buldum

S., iOS Kullanıcısı

Ba-yıl-dım ❤️, çalışırken neredeyse her an kullanıyorum

Ders notlarını görmek için kaydol. Ücretsiz!

Tüm belgeleri görebilirsin

Notlarını Yükselt

Milyonlarca öğrenciye katıl

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Enerji ve Çarpışmalar: 11. Sınıf Esnek ve Esnek Olmayan Çarpışma Formülleri

user profile picture

Elif Ayşe Çiftci

@lifyeiftci_m6clbs5ws

·

24 Takipçiler

Takip Et

Elastic Collisions and Energy Conservation in Physics

This document covers key concepts in elastic collisions, energy conservation, and related formulas in physics. It explores:

  • Formulas for elastic and inelastic collisions
  • Conservation of momentum and kinetic energy
  • Potential and kinetic energy calculations
  • Spring elasticity and compression
  • Energy transformations during collisions

Key points include:

  • The difference between elastic and inelastic collisions
  • Formulas for central and non-central elastic collisions
  • Calculations involving springs and elastic potential energy
  • Applications of work, energy, and power concepts

24.07.2024

5

 

11/12

 

Fizik

0

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Page 2: Energy Transformations in Collisions

This page delves into energy transformations during collisions, particularly focusing on the interplay between kinetic and potential energy.

Example: The page illustrates how kinetic energy can be converted to potential energy during compression, and then back to kinetic energy as objects separate after collision.

The concept of total mechanical energy conservation is emphasized, showing that the sum of kinetic and potential energies remains constant in an isolated system.

Highlight: The formula Emek = Kinetik + Potansiyel (Mechanical Energy = Kinetic + Potential) is presented, underlining the principle of energy conservation.

The page also touches on the concept of contact time during collisions and how it relates to force and energy transfer.

Vocabulary: Esneklik potansiyel enerjisi formülü (Elastic potential energy formula) is introduced, relating to the energy stored in compressed or stretched objects during collision.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Page 3: Gravitational Potential Energy and Spring Calculations

This page focuses on calculations involving gravitational potential energy and spring systems. It presents formulas for maximum height calculations and spring compression.

Formula: The gravitational potential energy formula Ep = mgh is presented, where m is mass, g is gravitational acceleration, and h is height.

The page demonstrates how to calculate the maximum height reached by an object launched upward, incorporating both initial kinetic energy and gravitational potential energy.

Example: A problem is solved showing how an object losing mgh of potential energy gains 2mph of kinetic energy, illustrating energy conversion.

Spring calculations are introduced, relating force, spring constant, and displacement:

Formula: F = kx, where F is force, k is the spring constant, and x is displacement.

Vocabulary: Yayın sıkışma miktarı formülü (Spring compression amount formula) is a key concept on this page, used in elastic collision calculations.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Page 4: Energy Conservation in Complex Systems

This page applies energy conservation principles to more complex systems, involving multiple energy transformations.

Example: A problem is presented where an object falls from a height, compresses a spring, and then rebounds to a new height. This example integrates concepts of gravitational potential energy, elastic potential energy, and kinetic energy.

The page demonstrates step-by-step calculations for such complex energy transformations, emphasizing the conservation of total energy throughout the process.

Highlight: The problem solution shows how to calculate the maximum rebound height by equating initial and final energies in different forms.

Formula: The Kinetik enerji formülü (Kinetic energy formula) KE = ½mv² is applied in conjunction with potential energy formulas to solve complex problems.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Page 5: Force and Energy in Collisions

The final page focuses on force calculations in collision scenarios, particularly those involving springs.

Formula: The impulse-momentum theorem is implied with the equation F = ma, relating force to mass and acceleration during collision.

The page presents a scenario where an object collides with a spring, emphasizing the conversion of kinetic energy to elastic potential energy.

Highlight: The concept of work done by a spring force is introduced, relating displacement to energy storage in the spring.

Vocabulary: İki boyutta Esnek Çarpışmalar (Elastic Collisions in Two Dimensions) is briefly touched upon, suggesting an extension of the concepts to more complex collision scenarios.

This page serves as a conclusion, tying together the concepts of force, energy, and collisions discussed throughout the document.

ESNEIC GARPIEMA
MA
my
m₁NA +m2v2 = m₁v₁ + m₂vi
2
12
12
1 m₁ve² + 1/1 m242² = 1 mevli²+ 1/2 m² 1/2
√₁ + √ ₁ = 1/2 + 1/2"
V₁ M
Ep
=
S
.4, ki v

Page 1: Elastic Collision Formulas

This page introduces fundamental equations for elastic collisions. It presents the conservation of momentum and kinetic energy formulas that govern these interactions.

Highlight: The conservation of momentum equation for elastic collisions is presented as m₁v₁ + m₂v₂ = m₁v'₁ + m₂v'₂, where m represents mass and v represents velocity before and after collision.

Definition: An elastic collision is one in which both momentum and kinetic energy are conserved.

The page also shows the kinetic energy conservation equation, emphasizing that the total kinetic energy before and after the collision remains constant in perfectly elastic collisions.

Vocabulary: Merkezi esnek çarpışmalar formül (Formula for central elastic collisions) is a key concept introduced on this page, showing how to calculate velocities after collision.

Aradığını bulamıyor musun? Diğer derslere göz at.

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

Knowunity, Apple tarafından büyük ilgi gördü ve Almanya, İtalya, Polonya, İsviçre ve Birleşik Krallık'ta eğitim kategorisinde sürekli olarak en üst sıralarda yer aldı. Hemen Knowunity'e katıl ve dünya çapında milyonlarca öğrenciyle yardımlaş.

Ranked #1 Education App

İndir

Google Play

İndir

App Store

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

4.9+

Ortalama Uygulama Puanı

15 M

Öğrenci Knowunity kullanıyor

#1

Eğitim uygulamaları tablosunda 12 ülkede

950 K+

Öğrenci ders notlarını yükledi

Kararsız mısın? Bizi bir de dünyanın dört bir yanındaki kullanıcılarımızdan dinle!

iOS Kullanıcısı

Kesinlikle harika bir uygulama, resmen hayatımı kolaylaştırdı.

Stefan S, iOS Kullanıcısı

Uygulama çok basit ve iyi tasarlanmış. Şimdiye kadar aradığım her şeyi buldum

S., iOS Kullanıcısı

Ba-yıl-dım ❤️, çalışırken neredeyse her an kullanıyorum