Dersler

Dersler

Daha Fazla

Serbest Düşme ve Atış Formülleri: Yüksekten ve Aşağıdan Yukarıya

Görüntüle

Serbest Düşme ve Atış Formülleri: Yüksekten ve Aşağıdan Yukarıya
user profile picture

Asya Aslan

@syaslan_8v2dvqtuhtrh

·

39 Takipçiler

Takip Et

Projectile motion and free fall are key concepts in physics, covering various types of motion under the influence of gravity. This summary explores different scenarios including free fall, vertical throws, and projectile launches, detailing their characteristics and formulas.

Free fall is characterized by constant acceleration due to gravity, with air resistance often neglected for simplicity.
Vertical throws include upward and downward motions, each with distinct velocity and position equations.
Horizontal and oblique projectile motions combine horizontal and vertical components, resulting in parabolic trajectories.
• Key formulas are provided for velocity, position, and time calculations in each type of motion.
• The effects of air resistance are briefly discussed, introducing the concept of terminal velocity.

25.07.2024

274

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Görüntüle

Types of Projectile Motion

This page delves into various types of projectile motion, expanding on the concepts introduced in the previous page.

Downward Vertical Throw

A downward vertical throw is similar to free fall but with an initial downward velocity.

Key equations:

  • Velocity: v = v₀ + gt
  • Position: h = v₀t + ½gt²
  • Velocity-position relationship: v² = v₀² + 2gh

Upward Vertical Throw

An upward vertical throw involves an object launched vertically upward against gravity.

Highlight: The time taken for an object to reach its maximum height is equal to the time it takes to fall back to its starting point.

The maximum height (h_max) reached is given by: h_max = v₀²/(2g)

Horizontal Projectile Motion

Horizontal projectile motion involves an object launched horizontally from a certain height.

Definition: Horizontal projectile motion combines constant horizontal velocity with accelerated vertical motion due to gravity.

Key equations:

  • Horizontal position: x = v_x · t
  • Vertical position: y = ½gt²
  • Velocity: v = √(v_x² + v_y²)

Where v_x is the constant horizontal velocity and v_y is the changing vertical velocity.

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Görüntüle

Oblique Projectile Motion

This page focuses on oblique projectile motion, also known as eğik atış in Turkish.

Oblique projectile motion occurs when an object is launched at an angle to the horizontal.

Definition: Oblique projectile motion combines both horizontal and vertical components of velocity, resulting in a parabolic trajectory.

Key equations for oblique projectile motion:

  • Initial horizontal velocity: v_x = v₀ · cos(θ)
  • Initial vertical velocity: v_y = v₀ · sin(θ)
  • Range (horizontal distance): X = (v₀² · sin(2θ)) / g
  • Maximum height: h_max = (v₀² · sin²(θ)) / (2g)
  • Time of flight: t = (2v₀ · sin(θ)) / g

Where v₀ is the initial velocity and θ is the launch angle.

Highlight: The maximum range for an oblique projectile is achieved at a launch angle of 45°.

The page includes an example problem involving a projectile launched horizontally at 30 m/s, demonstrating calculations for time of flight, range, and impact velocity.

Example: For a horizontally launched projectile at 30 m/s from a height of 80 m, the time of flight is 4 seconds, and the range is 120 m.

Additional Notes on Oblique Projectile Motion

  • The trajectory is symmetrical, with the time to reach maximum height equal to the time to fall from maximum height.
  • For two different angles that sum to 90°, the ranges will be equal if the initial velocities are the same.
  • The velocity at any point can be calculated using the horizontal and vertical components: v = √(v_x² + v_y²)

Vocabulary: Menzil (range) is the horizontal distance traveled by a projectile from launch to landing.

The page concludes with a diagram illustrating the parabolic paths of projectiles launched at different angles, emphasizing the relationship between launch angle and range.

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Görüntüle

Free Fall and Vertical Motion

This page introduces the concepts of free fall and vertical motion, crucial for understanding projectile physics.

Free Fall

Free fall is the motion of an object under the influence of gravity alone. In this idealized scenario, air resistance is typically ignored.

Definition: Free fall is the motion of an object accelerating towards the Earth's center due to gravity, with no other forces acting upon it.

Key equations for free fall include:

  • Velocity: v = g·t
  • Position: h = ½gt²
  • Velocity-position relationship: v² = 2gh

Where g is the acceleration due to gravity (approximately 10 m/s² on Earth), t is time, h is height, and v is velocity.

Highlight: The acceleration in free fall is constant and equal to g, regardless of the object's mass.

Air Resistance and Terminal Velocity

In reality, objects falling through air experience air resistance, which opposes the motion.

Vocabulary: Terminal velocity is the constant speed reached by a falling object when the air resistance equals the gravitational force.

The page illustrates how velocity changes over time with air resistance, eventually reaching terminal velocity.

Vertical Throws

The page also introduces vertical throws, both upward and downward.

Example: For an object thrown upward, its velocity decreases until it reaches the maximum height, then increases as it falls back down.

Key equations for vertical throws are similar to those of free fall, but include an initial velocity term (v₀).

Aradığını bulamıyor musun? Diğer derslere göz at.

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

Knowunity, Apple tarafından büyük ilgi gördü ve Almanya, İtalya, Polonya, İsviçre ve Birleşik Krallık'ta eğitim kategorisinde sürekli olarak en üst sıralarda yer aldı. Hemen Knowunity'e katıl ve dünya çapında milyonlarca öğrenciyle yardımlaş.

Ranked #1 Education App

İndir

Google Play

İndir

App Store

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

4.9+

Ortalama Uygulama Puanı

15 M

Öğrenci Knowunity kullanıyor

#1

Eğitim uygulamaları tablosunda 12 ülkede

950 K+

Öğrenci ders notlarını yükledi

Kararsız mısın? Bizi bir de dünyanın dört bir yanındaki kullanıcılarımızdan dinle!

iOS Kullanıcısı

Kesinlikle harika bir uygulama, resmen hayatımı kolaylaştırdı.

Stefan S, iOS Kullanıcısı

Uygulama çok basit ve iyi tasarlanmış. Şimdiye kadar aradığım her şeyi buldum

S., iOS Kullanıcısı

Ba-yıl-dım ❤️, çalışırken neredeyse her an kullanıyorum

Serbest Düşme ve Atış Formülleri: Yüksekten ve Aşağıdan Yukarıya

user profile picture

Asya Aslan

@syaslan_8v2dvqtuhtrh

·

39 Takipçiler

Takip Et

Projectile motion and free fall are key concepts in physics, covering various types of motion under the influence of gravity. This summary explores different scenarios including free fall, vertical throws, and projectile launches, detailing their characteristics and formulas.

Free fall is characterized by constant acceleration due to gravity, with air resistance often neglected for simplicity.
Vertical throws include upward and downward motions, each with distinct velocity and position equations.
Horizontal and oblique projectile motions combine horizontal and vertical components, resulting in parabolic trajectories.
• Key formulas are provided for velocity, position, and time calculations in each type of motion.
• The effects of air resistance are briefly discussed, introducing the concept of terminal velocity.

25.07.2024

274

 

11

 

Fizik

8

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Kayıt Ol

Kaydol ve binlerce ders notuna sınırsız erişim sağla. Ücretsiz!

Tüm belgeleri görebilirsin

Milyonlarca öğrenciye katıl

Notlarını Yükselt

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Types of Projectile Motion

This page delves into various types of projectile motion, expanding on the concepts introduced in the previous page.

Downward Vertical Throw

A downward vertical throw is similar to free fall but with an initial downward velocity.

Key equations:

  • Velocity: v = v₀ + gt
  • Position: h = v₀t + ½gt²
  • Velocity-position relationship: v² = v₀² + 2gh

Upward Vertical Throw

An upward vertical throw involves an object launched vertically upward against gravity.

Highlight: The time taken for an object to reach its maximum height is equal to the time it takes to fall back to its starting point.

The maximum height (h_max) reached is given by: h_max = v₀²/(2g)

Horizontal Projectile Motion

Horizontal projectile motion involves an object launched horizontally from a certain height.

Definition: Horizontal projectile motion combines constant horizontal velocity with accelerated vertical motion due to gravity.

Key equations:

  • Horizontal position: x = v_x · t
  • Vertical position: y = ½gt²
  • Velocity: v = √(v_x² + v_y²)

Where v_x is the constant horizontal velocity and v_y is the changing vertical velocity.

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Kayıt Ol

Kaydol ve binlerce ders notuna sınırsız erişim sağla. Ücretsiz!

Tüm belgeleri görebilirsin

Milyonlarca öğrenciye katıl

Notlarını Yükselt

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Oblique Projectile Motion

This page focuses on oblique projectile motion, also known as eğik atış in Turkish.

Oblique projectile motion occurs when an object is launched at an angle to the horizontal.

Definition: Oblique projectile motion combines both horizontal and vertical components of velocity, resulting in a parabolic trajectory.

Key equations for oblique projectile motion:

  • Initial horizontal velocity: v_x = v₀ · cos(θ)
  • Initial vertical velocity: v_y = v₀ · sin(θ)
  • Range (horizontal distance): X = (v₀² · sin(2θ)) / g
  • Maximum height: h_max = (v₀² · sin²(θ)) / (2g)
  • Time of flight: t = (2v₀ · sin(θ)) / g

Where v₀ is the initial velocity and θ is the launch angle.

Highlight: The maximum range for an oblique projectile is achieved at a launch angle of 45°.

The page includes an example problem involving a projectile launched horizontally at 30 m/s, demonstrating calculations for time of flight, range, and impact velocity.

Example: For a horizontally launched projectile at 30 m/s from a height of 80 m, the time of flight is 4 seconds, and the range is 120 m.

Additional Notes on Oblique Projectile Motion

  • The trajectory is symmetrical, with the time to reach maximum height equal to the time to fall from maximum height.
  • For two different angles that sum to 90°, the ranges will be equal if the initial velocities are the same.
  • The velocity at any point can be calculated using the horizontal and vertical components: v = √(v_x² + v_y²)

Vocabulary: Menzil (range) is the horizontal distance traveled by a projectile from launch to landing.

The page concludes with a diagram illustrating the parabolic paths of projectiles launched at different angles, emphasizing the relationship between launch angle and range.

atışlar
1) Serbest Dusme:
ivme
O
Fnet = ng = T. a.
g.t= sv
गा
t. V
g=a
v=g.t
h=
gt
9=10m/s²
h1z
lo
15
25
35
30
2V
40
·t=2
IV= 10.3=30
Hava d

Kayıt Ol

Kaydol ve binlerce ders notuna sınırsız erişim sağla. Ücretsiz!

Tüm belgeleri görebilirsin

Milyonlarca öğrenciye katıl

Notlarını Yükselt

Kaydolduğunda Hizmet Şartları ve Gizlilik Politikasını kabul etmiş olursun

Free Fall and Vertical Motion

This page introduces the concepts of free fall and vertical motion, crucial for understanding projectile physics.

Free Fall

Free fall is the motion of an object under the influence of gravity alone. In this idealized scenario, air resistance is typically ignored.

Definition: Free fall is the motion of an object accelerating towards the Earth's center due to gravity, with no other forces acting upon it.

Key equations for free fall include:

  • Velocity: v = g·t
  • Position: h = ½gt²
  • Velocity-position relationship: v² = 2gh

Where g is the acceleration due to gravity (approximately 10 m/s² on Earth), t is time, h is height, and v is velocity.

Highlight: The acceleration in free fall is constant and equal to g, regardless of the object's mass.

Air Resistance and Terminal Velocity

In reality, objects falling through air experience air resistance, which opposes the motion.

Vocabulary: Terminal velocity is the constant speed reached by a falling object when the air resistance equals the gravitational force.

The page illustrates how velocity changes over time with air resistance, eventually reaching terminal velocity.

Vertical Throws

The page also introduces vertical throws, both upward and downward.

Example: For an object thrown upward, its velocity decreases until it reaches the maximum height, then increases as it falls back down.

Key equations for vertical throws are similar to those of free fall, but include an initial velocity term (v₀).

Aradığını bulamıyor musun? Diğer derslere göz at.

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

Knowunity, Apple tarafından büyük ilgi gördü ve Almanya, İtalya, Polonya, İsviçre ve Birleşik Krallık'ta eğitim kategorisinde sürekli olarak en üst sıralarda yer aldı. Hemen Knowunity'e katıl ve dünya çapında milyonlarca öğrenciyle yardımlaş.

Ranked #1 Education App

İndir

Google Play

İndir

App Store

Knowunity, beş Avrupa ülkesinde 1 numaralı eğitim uygulaması!

4.9+

Ortalama Uygulama Puanı

15 M

Öğrenci Knowunity kullanıyor

#1

Eğitim uygulamaları tablosunda 12 ülkede

950 K+

Öğrenci ders notlarını yükledi

Kararsız mısın? Bizi bir de dünyanın dört bir yanındaki kullanıcılarımızdan dinle!

iOS Kullanıcısı

Kesinlikle harika bir uygulama, resmen hayatımı kolaylaştırdı.

Stefan S, iOS Kullanıcısı

Uygulama çok basit ve iyi tasarlanmış. Şimdiye kadar aradığım her şeyi buldum

S., iOS Kullanıcısı

Ba-yıl-dım ❤️, çalışırken neredeyse her an kullanıyorum